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Abstract

Frameworks or problem solving environments that
support application development form an active area of
research. The Multidisciplinary Optimization Branch at
NASA Langley Research Center is investigating frame-
works for supporting multidisciplinary analysis and
optimization research. The Branch has generated a list
of framework requirements, based on the experience
gained from the Framework for Interdisciplinary Design
Optimization project and the information acquired dur-
ing a framework evaluation process. In this study, four
existing frameworks are examined against these require-
ments. The results of this examination suggest several
topics for further framework research.

Intr oduction

Multidisciplinary design of aerospace systems is a
complex, computationally intensive process that com-
bines discipline analyses with design-space search and
decision making. The decision making is based on engi-
neering judgement but is greatly assisted by computer
automation. Because the point of view, design empha-
sis, and design approach of discipline specialists can be
quite different, the practice has often been for each dis-
cipline to be optimized independently, having limited
direct interaction or communication with other disci-
plines. The present aim of Multidisciplinary Design
Optimization (MDO) is to meet the needs for increased
interdisciplinary interaction and communication and for
reduced design cycle time.1

The development of computational frameworks or
problem solving environments offers the capability to
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meet these needs via the use of sophisticated computa-
tional procedures combined with state-of-the-art optimi-
zation or design improvement techniques. Specifically,
the development of computational frameworks to assist
in rapid generation of “what-if” scenarios with minimal
programming effort would be a powerful aid to the
designer in improving the results of the design process
and in reducing the time and thus the costs.

The Multidisciplinary Optimization Branch
(MDOB) at NASA Langley Research Center (LaRC)
recognizes the need for a framework that supports MDO
applications—in particular, a framework that can sup-
port the implementation and execution of MDO applica-
tions and can provide a set of support services
commonly needed in applications of this type. By hav-
ing the framework support the integration of various
processes of the MDO application, the designer would
be able to concentrate more on the application and less
on the programming details. The framework should
automate the integration activities, thereby eliminating
the hurdles otherwise present when transferring data
among processes. In addition to development and exe-
cution support, a framework could provide a common
working environment, which would increase the pro-
ductivity of multidisciplinary projects.

The MDOB has participated in the development of
the Framework for Interdisciplinary Design Optimiza-
tion (FIDO),2 sponsored by the High Performance Com-
puting and Communication Program (HPCCP). The
purpose of the FIDO project is to investigate the use of a
distributed, heterogeneous computing system to facili-
tate communications, apply computer automation, and
introduce parallel computing to produce a truly multi-
disciplinary process. This framework is intended to
demonstrate technical feasibility and usefulness for
selected applications and to provide a working environ-
ment for use by LaRC researchers testing various opti-
mization schemes. It automates the coordination of
analyses by the various disciplines (each on its assigned
computer) into an integrated optimization scheme, while
allowing for visualization and steering by the designer.
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Increasingly complex multidisciplinary models of
the High Speed Civil Transport (HSCT) have been
implemented in FIDO. The framework was first demon-
strated for a version of this design problem with fast,
limited-fidelity discipline codes (equivalent plate struc-
tural analysis, linearized aerodynamic analysis, propul-
sion table lookup, and a simple range equation for
performance fuel weight estimation), a geometry given
by a set of points, a small number of design variables
(on the order of ten), and a simple objective function.
Recently the HSCT application has been demonstrated
with medium-fidelity structural (coarse-grain, finite-ele-
ment analysis) and aerodynamic (marching supersonic
Euler) codes coupled in a static aeroelastic loop. A rede-
signed HSCT application, now in progress, will provide
the additional realism afforded by full nonlinear aerody-
namic corrections, realistic finite-element analysis and
weights estimation, full mission-cycle performance
evaluation, and an actual, proposed HSCT geometry
with realistic constraints, such as ground scrape.

The major limitation with FIDO is that the system
was implemented with the purpose of demonstrating a
specific application—the HSCT design. As a conse-
quence, the sequence of processes is hard coded, mak-
ing it difficult to modify. The intertwining of the
framework tools and the application formulation, cou-
pled with a lack of documentation, has made FIDO inac-
cessible for use by researchers who did not participate
closely in its development.

Although FIDO was not implemented as a generic
framework for MDO applications, its development has
provided much experience with the issues of framework
architecture and problem formulation. Because of
FIDO’s limitations described above and the amount of
resources required to continue development and mainte-
nance of a computational environment for MDO
research, MDOB and HPCCP have been exploring alter-
native frameworks.

Within the past several years, MDOB and HPCCP
conducted an evaluation process to investigate currently
available frameworks. With the goal of developing a set
of requirements for MDO frameworks, MDOB and
HPCCP interacted with LaRC organizations and other
government agencies involved in MDO research. Sev-
eral candidate frameworks with the potential for sup-
porting MDO research activities were identified.3 The
evaluation process relied on written information and
personal contact with the framework developers; the
evaluation did not include hands-on testing of these
frameworks. Framework evaluation efforts continue in
MDOB.

This paper provides conclusions made to date about
the framework characteristics necessary for supporting
MDO applications. First, the necessary framework
requirements identified during the evaluation process
are discussed. Next, a number of existing frameworks
that appear to be relevant to MDO work are briefly
described, and then several of these frameworks are
described in more detail.‡ Because some time has
passed since the evaluation process previously
described, the set of frameworks mentioned in this paper
does not coincide exactly with the frameworks origi-
nally investigated. The final section identifies some
weaknesses found in current frameworks and suggests
several topics for further research.

MDO Framework Requirements

The purpose of a framework is to provide support
for multidisciplinary design optimization application
development and execution. This section lists a set of
requirements for an ideal framework to be employed in
LaRC’s MDO research. The requirements are presented
from the following points of view: architectural design,
problem formulation construction, problem execution,
and information access.

Ar chitectural Design

A framework should provide a Graphical User
Interface (GUI) that is intuitive. The GUI should be
designed such that the user can quickly learn to use the
features of the framework effectively. Such a GUI
would encourage the user to take advantage of the bene-
fits offered by the framework.

A framework should be designed using object-ori-
ented principles. Object-oriented design4 has several
advantages in MDO applications. For example, object-
oriented principles allow switching of analysis or opti-
mization methods at run time. In addition, object-ori-
ented concepts extend naturally into distributed
computing, which is moving in the direction of distrib-
uted object technology.

A framework should be extensible and should pro-
vide support for developing the interfaces required to
integrate new processes into the system.The user should
be able to integrate new discipline codes, optimization
methods, and other tools of interest into the framework.

‡ The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement,
either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.
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As a result, the user would avoid having to wait for the
needed features to appear in new releases.

A framework should not impose an unreasonable
amount of overhead on the optimization process. Natu-
rally, there will be some reduction in speed when the
user is not fine-tuning the code. However, the frame-
work should provide some performance measurements
so that the user can identify time-consuming activities.

A framework should be able to handle large prob-
lem sizes. Currently, a framework should be able to sup-
port problems with at least several hundred design
variables. In the future, a framework should support
problems with thousands of design variables.

A framework should support collaborative design.
MDO involves the expertise of multiple discipline
designers. The designers need to be able to conveniently
work together on the problem. A framework architec-
ture that allows simultaneous access to the problem data
by multiple users is desirable.

A framework design should be based on standards.
Examples of standards include message passing, data-
base access, and languages. Use of standards preserves
investment and results in lower maintenance costs.

Problem Formulation Construction

A framework should allow the user to configure
complex branching and iterative MDO problem formu-
lations easily without low-level programming. By rais-
ing the level of abstraction at which the user programs
the MDO problem, problems could be constructed faster
and be less prone to error. Ideally, a framework would
provide a visual programming interface for connecting
processes.

A framework should allow the user to easily recon-
figure existing MDO problem formulations. Problem
formulation reconfiguration examples include replacing
existing processes with new ones, deleting processes, or
adding new processes to the application. Replacing pro-
cesses with other processes may be desirable when
experimenting with different levels of discipline fidel-
ity. Adding/deleting processes may be desirable when
adding or removing disciplines to the MDO problem.
For example, the user may want to delete a process if it
is no longer generating useful data. Fast reconfiguration
supports the user in exploring alternative views of the
problem without having to build the new problem from
scratch.

A framework should support the user in incorporat-
ing legacy codes (written in a variety of languages) and
proprietary codes (where the source is not available)

into the MDO problem formulation. A major purpose of
a framework is to support code reuse. In order for the
framework to enhance productivity, users must be able
to continue the use of familiar codes with no code
changes required. The framework should provide tools
for creating wrappers that would generate the appropri-
ate input files, invoke the discipline programs, and auto-
matically extract the output of interest.

A framework should allow the user to integrate dis-
cipline analyses with several optimization methods,
including multilevel schemes involving suboptimiza-
tions. Since no one optimization method is best for all
problems, it is important that a framework support
experimentation with different methods.5,6 The user
should be able to select a combination of optimization
methods when defining the optimization problem.

A framework should provide facilities for debug-
ging of multiple processes executing on computers
across a network.The framework should provide feed-
back to the user when problems are not constructed
properly. The user should be able to “step through” the
application during execution, monitoring progress of
several remote computations.

Problem Execution

A framework should automate the execution of pro-
cesses and the movement of data.In the traditional mode
of multidisciplinary design, engineers wait to receive
data from another discipline and then reformat it for
input to their discipline. A framework should eliminate
this delay by automating the preparation of input files,
the execution of disciplines and optimization methods,
the extraction of data from output files, and the transfer
of data between processes.

A framework should be able to execute multiple
processes in parallel. For computationally intensive
MDO problems, the user should be able to identify and
take advantage of coarse-grain parallelism within the
problem. For example, several discipline codes may be
able to execute in parallel without affecting correctness
of results. Furthermore, in the case of some multilevel
optimization formulations, subsystem optimizations are
able to proceed in parallel.

A framework should support execution distributed
across a network of heterogeneous computers. The user
should be able to take advantage of resources on the net-
work and of codes that have been optimized for certain
hardware.

A framework should support user interaction
(steering) during the design cycle. Realistically, the user
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needs to evaluate results as the execution progresses and
adjust the problem as needed. For example, the user
may want to substitute processes, disable execution of a
process, or switch optimization methods. Also, the user
may want to adjust the design variable and/or constraint
sets.

A framework should allow the user to operate in a
batch mode.For productivity, the user needs to be able
to define a problem or set of problems which can be
executed one after the other without any manual inter-
vention. For example, the user could take advantage of
this capability to experiment with multiple starting
points for an optimization problem.

Inf ormation Access

A framework should provide database management
features. For larger problems, it is convenient to have a
central database for maintaining data used by multiple
disciplines. The user should have the option of defining
which data are written to and read from the central data-
base.

A framework should provide the capability to visu-
alize intermediate and final optimization and analysis
results. Also, the user should be able to easily track his-
tories of chosen design variables, behavior variables,
constraints, and objective function values. These results
should become available as soon as they are stored in
the database and remain easily accessible after computa-
tions are complete.

A framework should provide a monitoring capabil-
ity for viewing the status of an execution, including the
system status. For example, a framework should provide
visual feedback on which processes are currently exe-
cuting. This feature would alert the user to potential
problems in the system, such as failure of a computation
to complete within a reasonable time.

A framework should provide some mechanism for
fault tolerance. For example, if the computer on which a
process is executing fails, the user should be able to
recover from an earlier automatic checkpoint with little
or no loss of data. Even if no problems occur, the frame-
work should provide a restart capability so that the user
can begin a problem from a previous state.

Research and Development in MDO Frameworks

There is much activity in the area of frameworks
and/or problem solving environments in government
labs, industry, and universities. This section provides
brief descriptions of those systems which seem most rel-
evant to the authors.

The following three existing commercial products
provide optimization toolkit environments allowing the
user to integrate analyses with optimization methods in
a flexible manner. Each product provides GUI services
for reviewing results of an optimization process.

• iSIGHT (Engineous Software, Inc.) - The iSIGHT7

product provides an optimization toolkit that allows
a combination of optimization methods [numerical,
heuristic, exploratory, design of experiments
(DOE), and response-surface modeling (RSM)] to
be applied to the MDO application.

• LMS Optimus (LMS Numerical Technologies) -
LMS Optimus8 provides nonlinear programming
optimization techniques as well as DOE and RSM
methods.

• Pointer (Synaps, Inc.) - Pointer provides genetic,
downhill simplex, and gradient optimization tech-
niques.

A noncommercial framework that provides an opti-
mization toolkit capability is DAKOTA (Design Analy-
sis Kit for OpTimizAtion), developed by Sandia
National Laboratories. Sandia has used DAKOTA to
implement applications on massively parallel
machines,9,10 as well as on workstation clusters.

Several multidisciplinary environments that focus
less on providing an optimization toolkit and more on
exploiting a distributed, heterogeneous computing envi-
ronment are listed below.

• FIDO (NASA LaRC) - FIDO2 was developed to
demonstrate distributed and parallel execution of a
multidisciplinary analysis and optimization applica-
tion using the HSCT as its example. The project is
supported by HPCCP.

• NPSS [NASA Lewis Research Center (LeRC)] -
NPSS11 (Numerical Propulsion System Simula-
tion), supported by HPCCP, enables multidisci-
plinary design and analysis of engines.

• Access Manager (Boeing) - Access Manager12 sup-
ports multidisciplinary analysis and design in a dis-
tributed, heterogeneous computing environment. A
key feature of this system allows the user to control
the processes via a GUI.

• MIDAS (Jet Propulsion Laboratory) - MIDAS13

(Multidisciplinary Integrated Design Assistant for
Spacecraft) supports integration for multidisci-
plinary analysis in a distributed, heterogeneous
environment.

• MDICE-AE (CFD Research Corporation) -
MDICE-AE (Multi-Disciplinary Computing Envi-
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ronment for Aeroelasticity) supports aeroelastic
analysis calculations. This framework is based on a
distributed object model.

• Phoenix Integration, Inc. - For integrating multidis-
ciplinary problems, this company is applying the
concept of analysis servers that remotely host anal-
ysis codes and client design tools that connect to the
analysis servers. The servers provide tools for
wrapping and error recovery.

• LAWE14 [High Technology Corporation (HTC)] -
HTC promises a programming environment that
will support development of large, distributed appli-
cations using high-level communication objects.
LAWE (Large Application Working Environment)
will be composed of subsystems for communica-
tions, visual programming, input and output dis-
play, and system monitoring. It is being developed
under a NASA Small Business Innovative Research
contract.

Some design tool products have a stronger focus on
the data involved in the design. Below are a few exam-
ples of these tools.

• AML (TechnoSoft, Inc.) - AML15 (Adaptive Mod-
eling Language) employs a unified part model para-
digm and a demand-driven calculation feature.

• IMAGE (Georgia Institute of Technology) -
IMAGE16 (Intelligent Multidisciplinary Aircraft
Generation Environment) is a research project of
the Aerospace Engineering Department. A feature
of this framework is the provision of object-ori-
ented data management utilities for use during
design processes. IMAGE also provides a distrib-
uted computing capability.

• DARWIN (NASA Ames Research Center) - The
Analytical Tools and Environments for Design
program17 is developing information technologies
for use in the design of aeronautical systems. As
part of this effort, DARWIN18 (Developmental
Aeronautics Revolutionizing Wind-tunnels with
Intelligent systems for NASA) aims to reduce
design cycle time by improving access to experi-
mental data.

Web technology appears to be ideal for achieving
several of the framework requirements, such as facilitat-
ing collaboration among researchers and access to infor-
mation. The DARWIN framework is an example of a
system using Web technology. Users access data by
means of Web browsers; the data returned is generated
by CGI (Common Gateway Interface) scripts and visu-
alized via graphing Java§ applets. Another project
exploring the use of Web technology was conducted by

MDOB at NASA LaRC.19,20 This framework combines
the use of a knowledge-based system for determining
the processes ready for execution and Web technology
for controlling processes, monitoring execution status,
and visualizing problem data.

Several research projects (e.g., Legion,21 Globus22)
are focusing heavily on distributed computing technol-
ogy and are tackling complex issues such as security,
fault tolerance, and resource management. MDO is one
of the application areas that will benefit from this
research.

MDO Frameworks

This section describes in more detail four of the
frameworks mentioned above that support MDO: FIDO,
iSIGHT, LMS Optimus, and DAKOTA. The amount of
in-house experience obtained with FIDO warrants its
description here. The evaluation process described in
the “Introduction” section revealed the iSIGHT and
DAKOTA frameworks as two of the most relevant
MDO frameworks available. Information acquired since
the evaluation study reveals LMS Optimus to be another
promising framework.

The descriptions that follow identify some of the
major features supported by each framework and some
of the requirements, as discussed in a previous section,
that the frameworks are known to support. Due to lack
of information or lack of experience with a particular
framework, not all requirements can be addressed for
each one.

FIDO

The FIDO project was briefly discussed in the
“Introduction” section. This section describes the FIDO
features in more detail.

Architectural Design. The FIDO architecture is
modular. The framework is organized into distributed
computational and service modules, which communi-
cate through a communications library.23 There is a
computational module for each discipline contributing
to the application. The service modules, such as the
GUI, Executive (control), Data Manager, Setup, and
Spy, are intended to be application independent.

The communications library contains functions
designed to facilitate communications among a general
system of computer codes executed in a heterogeneous,
distributed network of computers. This library allows
FIDO to be programmed without directly accessing the

§ Java is a trademark of Sun Microsystems, Inc.
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underlying, message-passing primitives and minimizes
the impact on FIDO due to any changes in them. Cur-
rently, the PVM (Parallel Virtual Machine) primitives24

from the Oak Ridge National Laboratory are used.

The GUI is limited to displaying the status of the
execution. The Spy tool promotes collaboration among
researchers by allowing access to Spy from multiple
remote computers.

Although object-oriented principles were not
applied to FIDO, there was a strong emphasis on pro-
ducing a modular system. As the complexity of the
HSCT demonstration problem increased, more attention
was given to defining discipline interfaces so that disci-
plines with differing fidelity levels could be inter-
changed.

The development of persistent discipline drivers
has increased execution efficiency. Persistent drivers
allow data that are to be shared among related codes
within a discipline to be conveniently held in memory.
Timing routines inserted into the application allow the
user to determine the amount of execution time for vari-
ous parts of the computation.

Problem Formulation Construction. A major limita-
tion of FIDO is that it lacks support for building and
reconfiguring MDO problem formulations at a higher
level of abstraction than coding in the currently avail-
able programming languages, such as FORTRAN and
C. Some discipline codes used in FIDO are decades old
and originally contained deeply embeddedprint and
stop statements. These codes were modified to behave
as library subroutines and are invoked from the appro-
priate discipline driver. As a result, the discipline driver
and the associated discipline codes are linked into one
executable program. Overall, this is not a desirable
approach because it involves extra work, duplicates
maintenance tasks, and does not promote code reuse.

Coordination of discipline analyses is provided by a
problem-dependent Master module. Currently, the
code for this module must be rewritten for each specific
MDO application. For example, the initial focus appli-
cation of the FIDO project has a 1000-line C-code Mas-
ter module to perform the complex iterative looping
behavior required for even the simplified preliminary
design of an HSCT.

Only gradient-based optimization methods have
been used within FIDO. In the early versions of FIDO,
CONMIN25 was incorporated into the HSCT applica-
tion. Later, the optimization module was modified to
include KSOPT26 as an alternative to CONMIN. The
user identifies the choice of optimizer by a data file
parameter.

The various modules were compiled with debug-
ging options so that the code could be stepped through
during execution.

Problem Execution. The user designs the FIDO
Master module so that the optimization and analysis
processes are invoked and synchronized appropriately.
The user provides the synchronization logic within the
discipline drivers in the form of calls to the communica-
tions library’s send and receive routines.

The FIDO Setup module allows the user to choose
the system configuration and the initial conditions and
constraints of the optimization process from a range of
previously defined possibilities. These are contained in
four configuration files that define the data in standard-
ized formats.

All major data elements (individual items or file
pointers) that are shared between modules are passed to,
stored in, and retrieved from the central Data Manager.
Using file pointers, data files are passed directly on
request from the generating computer to the requesting
computer. Because the communications library allows
direct passing of data messages between the discipline
computers, direct communication of messages can be
implemented if the increased efficiency warrants it.

The discipline drivers and their corresponding anal-
yses are assigned to execute in parallel on different
computers defined to be part of the PVM network.
Because the discipline codes have short execution times,
the parallelism exploited thus far in the FIDO HSCT
applications is mainly in the calculation of derivatives
using a finite-difference technique.

From the beginning of its development, FIDO was
designed to allow some interactivity during the design
cycle. This feature is accomplished using the Spy tool,
which allows the user to steer the process while the
application is executing. By means of the Spy tool, the
user may change current values of design variables, con-
straints, and parameters. On the other hand, FIDO lacks
a convenient way of setting up multiple problems that
can execute one after the other. In particular, changing
the initial conditions of a problem requires manually
editing the input and configuration files.

Information Access. The FIDO Data Manager
allows storage and retrieval of data during problem exe-
cution and is designed so that no additional coding is
required for new problems. The user must define the
data to be handled prior to execution.

The FIDO Spy module allows the user to access
and plot data from previous design cycles. The accessi-
ble data includes information on the cycle status and
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selected scalar and array data from each cycle. The data
can be displayed as text or graphics. However, the data-
base is not persistent, so FIDO must be running for data
to be accessed.

The FIDO GUI displays the state of the problem
execution at all times. The GUI displays the problem
formulation and uses color to indicate those processes
that are starting up, executing, inactive, or shutting
down.

Although FIDO allows restart from a completed
optimization cycle, it provides no other fault-tolerance
capability. However, a restart requires some data file
preparation.

iSIGHT

The iSIGHT framework is a generic shell environ-
ment for supporting multidisciplinary optimization. A
key feature of iSIGHT is the ability to combine numeric,
exploratory, and heuristic methods during an optimiza-
tion.

Architectural Design. The iSIGHT environment
consists of several modules including an interpreter,
toolkits, and GUIs. The Tcl27 language is the interpreter
that provides the “glue” for integrating various pro-
cesses. GUI services are provided for connecting pro-
cesses, defining the optimization plan, and monitoring
results.

GUI services are provided for wrapping discipline
codes. In addition, the user may integrate additional
optimization techniques into iSIGHT. However, the
iSIGHT Application Programming Interface (API) must
be used to create the appropriate interface between the
optimizer and the framework. In addition, a Tcl com-
mand must be created for the optimization technique.

Problem Formulation Construction. The iSIGHT
framework provides the user with both a GUI, in which
modules are represented by icons, and the Multidisci-
plinary Optimization Language (MDOL) for construct-
ing MDO problems.28 Use of the GUI to define the
problem generates the appropriate MDOL file, referred
to as a description file. MDOL has a block structure
style and English-like language constructs.

The GUI provides the user with building blocks
representing discipline codes and calculation blocks that
may be needed in addition to the discipline codes. The
user may define the input, output, and execution invoca-
tion of the discipline code blocks, as well as the arith-
metic expressions for the calculations blocks. However,
within the GUI, the user is limited to defining a sequen-
tial order for the disciplines and calculations. If the

problem logic requires branching or iteration, the user
must express this logic through a combination of Tcl
and either MDOL or iSIGHT APIs in the description
file. Modification to the problem formulation requires
modification of the description file.

The iSIGHT framework allows users to construct
MDO applications using existing discipline codes with-
out modifications by interactively generating a code
wrapper. Parsing utilities create the appropriate input
files and extract the appropriate data from discipline
output files. Using the GUI and the input and output file
templates for a discipline code, the user can generate the
appropriate file parsing commands. As a result, the user
is able to integrate legacy and proprietary codes into the
MDO problem.

Optimization techniques in iSIGHT include numer-
ical, exploratory, expert system, and response surface
methodologies.29 The techniques or combination of
techniques, as well as the design variables, constraints,
and objective function, can be defined via the GUI or
the MDOL description file.

Problem Execution. The iSIGHT framework auto-
mates the execution of the various discipline codes and
calculation blocks, the handling of the data, and the
adjustment of design variables during optimization. The
computational processes defined in the problem formu-
lation are executed sequentially, because iSIGHT pro-
vides no support for parallelism. There is very limited
support for distributed computation. For example, a dis-
cipline code may initiate a remote process; however, all
description codes for a problem must reside in the same
directory on a single computer.

Interactive features30 in iSIGHT provide the capa-
bility to pause the execution and continue it later. The
user can stop the execution to modify the optimization
methods, design variables, constraints, and objective
function. Upon restart, the execution resumes from the
best design point of the previous optimization. Disci-
pline codes can be switched only if the appropriate logic
is present in the description file.

Information Access. The iSIGHT framework lacks
a database capability other than the data management
toolkit that keeps a history of the design states. There-
fore, data sharing among several discipline codes has to
be accomplished by writing and parsing files.

A monitoring capability is provided that can be
applied at any time during execution.30 Input and output
values can be monitored in tabular or graphical form. In
addition, the user can review the data from a completed
optimization and can restart the optimization process
from a design point previously computed. The GUI also
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indicates which process in a task is running by changing
the appearance of the module icon.

LMS Optimus

Another framework for multidisciplinary optimiza-
tion, LMS Optimus, allows a user to set up a problem,
select a method to be used with the problem, and ana-
lyze the results.31 Features of LMS Optimus provide
nonlinear programming (NLP), DOE, and RSM tech-
niques for optimization.

Architectural Design. The Optimus Kernel module
contains the GUI, which provides features for construct-
ing the analysis sequence and design problem and for
analyzing the results. The GUI is written using the C++
language and Motif¶. The user can include any analysis
code as part of an MDO application as long as the
design input and output can be identified in the input/
output files.

Two optimization modules are provided in LMS
Optimus: the DOE/RSM module and the NLP module.
A recently available feature allows the integration of an
external optimizer. All that is required for integration of
an optimizer is that it writes the adjusted design vari-
ables to a file and reads the analysis results from a file.

Due to internal array sizes, the maximum number
of design variables allowed is 50; the maximum number
of design outputs allowed is 200.

Problem Formulation Construction. The user
employs the LMS Optimus GUI to define the analysis
sequence. Through the GUI, the user identifies the anal-
yses and their corresponding input and output files. In
addition, the files associated with the design data input
and output are identified. Actions taken through the GUI
result in the creation of a command file. The command
file contains sections for defining design inputs, design
outputs, discipline input and output file parsing com-
mands, analysis sequencing, and optimization method
selection. The sequencing commands includeif/then/
else andfor control statements. The GUI generates only
a subset of commands that can be included in the com-
mand file; the user can edit the command file to include
additional commands.

The LMS Optimus user can include legacy and pro-
prietary codes in the analysis sequence without making
any modifications. The GUI can be used to identify the
design data in the input files; before each analysis is
executed, the input files are automatically constructed
by the framework to include appropriate input. Simi-

¶ Motif is a registered trademark of Open Software Foundation, Ltd.

larly, the user identifies, via the GUI, the output to be
extracted from the output file; after the analysis com-
pletes execution, the data is automatically extracted.

Once the analysis is defined, the user can select
either a user-defined table of experiments, an NLP
method, or a DOE/RSM method to be integrated with
the analysis. The NLP methods available include
sequential quadratic programming and generalized
reduced gradients. The results from a DOE method can
be used to form an RSM. The RSM may then be used in
place of the full analysis during an optimization.

Problem Execution. The Optimus Kernel automates
the execution of the various discipline codes included in
the analysis, manages the input and output data, and
adjusts the design variables. The processes defined in
the analysis are executed sequentially. For distributed
computing support, the command language includes a
command for executing a remote process.

Information Access. The results from a completed
NLP or DOE method can be loaded by the GUI and
postprocessed. The results of an optimization can be dis-
played in a tabular format. Several options exist for
visually analyzing an RSM.

DAKOTA

The DAKOTA design provides a flexible and
extensible interface between analysis codes and itera-
tion methods. Methods are included for optimization,
uncertainty quantification, parameter estimation, and
sensitivity analysis.

Architectural Design. The DAKOTA design is
based on object-oriented principles and is implemented
with the C++ language. The definition of generic inter-
faces between optimization methods and analysis codes
hides the specifics of each. Use of these interfaces and
object-oriented language features promotes the “plug
and play” capability.

Problem Formulation Construction. To define the
MDO application, the user must create a file that speci-
fies information about interfaces, variables, responses,
strategies, and methods.32 In DAKOTA, “strategies”
manage methods and “interfaces” provide access to the
discipline codes, which map the variables to the
responses.

Several types of interfaces are defined in
DAKOTA, the primary being the application interface.
The application interface allows discipline codes to be
accessed through either system calls or direct function
calls. The direct function call interface requires convert-
ing main programs to function calls and linking the
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functions into the DAKOTA executable. The system
call interface allows access to external programs; com-
munication between the external program and
DAKOTA is accomplish via files.

The interface section of the specification file must
include the name of the analysis (or analysis driver), and
if required, the names for the input and output filters
(i.e. pre- and post-processors). Note that only one analy-
sis driver may be specified; however, an entire MDO
application, developed outside of DAKOTA, along with
an input and an output filter, can be accessed through
these three names. The input filter must use the design
parameter list provided by DAKOTA to prepare the
input for the analysis driver. Also, the output filter must
retrieve data from the analysis driver and prepare the
response and sensitivity data in the format required for
use by DAKOTA.

A variety of optimization methods are provided,
including NLP and genetic algorithms. The DAKOTA
strategies manage multiple methods, disciplines, and
approximations. The strategies includesingle, multilevel
hybrid, and sequential approximate optimization. The
single strategy allows a single method to be used with a
single discipline. Themultilevel hybrid strategy allows
multiple methods to be used in succession with a disci-
pline. This strategy uses the best solution from one
method as the starting point for the next method. The
switching criteria used can either be based on an indi-
vidual method’s convergence criteria or an adaptive
technique that employs method performance metrics.
The sequential approximate optimization strategy uses
both a discipline and an approximation of the discipline.
The approximation model is optimized, and the disci-
pline model is evaluated at the approximate optimal
solution. These results are used to update the approxi-
mation.

Problem Execution. Both the execution of the anal-
ysis driver and input/output filters and the transfer of
data between these and the optimization methods are
automated by DAKOTA. Distributed computing is sup-
ported using MPI message passing on workstation clus-
ters and on massively parallel supercomputers. The
asynchronous function evaluation command option
allows concurrent analysis calculations and is available
with both system call and direct function interfaces.
This feature can be used when calculating derivatives
using finite differences or when using the parallel algo-
rithms provided in DAKOTA.

Information Access. There is an option for the user
to specify creation of a restart log. Also, several options
are available for handling application failure recovery.

Concluding Remarks

At LaRC, MDOB has gained experience in the
development and use of frameworks that support MDO
research. Framework evaluation and FIDO research
activities in MDOB have generated a set of framework
requirements. The FIDO, iSIGHT, LMS Optimus, and
DAKOTA frameworks have been examined against
these requirements.

None of the frameworks address all of the require-
ments; each has its strengths and weaknesses. Several
major areas for future framework research include sup-
port for problem construction, distributed and parallel
computing, database management, debugging, and
designer interactivity. The least support in problem for-
mulation construction is provided by FIDO. In the other
three frameworks, support that allows existing codes to
be integrated without modification typically is available
via parsing tools and system calls. The LMS Optimus
and iSIGHT frameworks provide visual programming
support for simple formulations.

Although more database management, distributed
and parallel computing capabilities are available in
FIDO than in the others, the user must program at a low
level to exploit these features. DAKOTA has more par-
allel and distributed capability than iSIGHT and LMS
Optimus. Central database capabilities are not available
in iSIGHT, in LMS Optimus, nor in DAKOTA. Visual-
ization of optimization results is available during execu-
tion within FIDO and iSIGHT but only after execution
within LMS Optimus.

Although FIDO does not meet all of the require-
ments discussed, the general architecture of the frame-
work has proven its worth. The complex design
processes that have been implemented in FIDO reveal
the benefits of FIDO features, such as the Spy tool for
promoting collaboration and design steering, the persis-
tent discipline drivers for promoting efficiency, and the
Database Manager for promoting data sharing.

Except for FIDO, LaRC’s MDOB has more experi-
ence using iSIGHT than the other frameworks, having
used it to implement an early version of the HSCT
application. Based on this experience, it was decided
that iSIGHT was not yet ready for use on the very com-
plex, distributed, high-fidelity HSCT application cur-
rently being designed. A new version of iSIGHT, which
is scheduled for release in the Fall of 1998, will provide
distributed computing and debugging capabilities.

The LMS Optimus framework is currently being
extended to provide parallel capability for scheduling
DOE and NLP across networks of computers. A new
version of DAKOTA has a capability for multilevel par-
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allelism, in which several multiprocessor simulations
are coordinated simultaneously.33

Because the frameworks examined do not yet pro-
vide the functionality necessary for implementing the
complex problems required under HPCCP, development
of a follow-on to FIDO34 is proceeding. A major change
in implementation is the use of a commercial CORBA-
compliant system35 instead of PVM to provide commu-
nications for distributed computation. CORBA is
becoming accepted as the standard for distributed object
technology. The wrapping of legacy code into Java
modules (called “Java Beans”) will promote flexibility
in the construction of the problem by using Java visual
programming packages. In addition, a commercial data-
base will be used to promote data sharing among disci-
plines and provide access to persistent data. The
redesigned framework will be used to implement an
HSCT application that contains high-fidelity aerody-
namics and structures codes, along with FLOPS36

(Flight Optimization System) for the performance anal-
ysis.37 This version of the HSCT problem increases the
number of design variables to approximately two hun-
dred.
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